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Abstract

Equilibrium solidification in a semitransparent planar layer is studied using an isothermal mushy zone model. The

layer is made up of a pure material being emitting, absorbing and isotropically scattering and is subject to radiative and

convective cooling. The model involves solving simultaneously the transient energy equation and the radiation

transport equation. An implicit finite volume scheme is employed to solve the energy equation, with the discrete or-

dinate method being used to deal with the radiation transport. A systematical parametric study is performed and the

effects of various materials optical properties and processing conditions are investigated. It is found that decreasing the

optical thickness and increasing the scattering albedo both lead to a wider mushy zone and a slower rate of solidifi-

cation. � 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Melting and solidification of semitransparent materi-

als are important physical phenomena involved in many

engineering areas such as crystal growth, laser material

processing, and nuclear engineering. The problem be-

comes extremely challenging because of complex radia-

tion heat transfer with internal absorbing, emitting and

scattering [1–3]. O’Hara et al. [4] were the first to treat

solidification of a pure semitransparent material by ex-

plicitly taking into account the internal radiation. They

solved a one-dimensional, steady-state, planar interface

solidification problem. Their analysis indicates that in-

ternal radiation significantly alters the temperature dis-

tributions in the melt and solid and thus affects the

stability of the planar interface. Later, Abrams and

Viskanta [5] extended this work by including the transient

effect. An important finding of their work is the melt su-

percooling in front of interface induced by the internal

radiation. Such melt undercooling may destabilize the

planar interface and thus leads to cellular or dendritic

structure, i.e., a mushy zone. Vasil’ev and Yuferev [6,7]

also observed such melt supercooling in studying shaped

growth of thin sapphire crystal which is a semitransparent

material. This phenomenon was referred to as ‘‘radiative

supercooling’’.Habib [8] analyzed themelting process of a

one-dimensional slab earlier but did not observe the melt

supercooling since the heat balance integral method with

an assumed temperature profile was employed.

Planar interface model has been assumed in many

following analyses with the effect of scattering being

considered. For example, Seki et al. [9] used a finite

difference method to study back melting of an ice layer

immediately adjacent to a surface. The ice was assumed

to be non-gray, isotropically scattering but non-emit-

ting. Cho and Ozisik [10] also considered the effect of

isotropic scattering in their study of one-dimensional

solidification of a semi-infinite medium. Diaz and

Viskanta [11], on the other hand, utilized a non-gray

model to investigate the melting of an n-octadecane slab

due to an external radiation source. Highly peaked

forward scattering was assumed for the radiation

problem but the radiation from the medium was ne-

glected. Extensive efforts were also made to study the

effect of internal radiation in various growth processes

of oxide crystals (see [3,12,13]). Here multi-dimensional

geometries were considered.

Since the undercooled melt is a thermodynamic

metastable phase, it would be difficult to sustain a large
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undercooling in an engineering system, and instead, a

two-phase region, i.e., a mushy zone, was suggested. The

mushy zone may be made of either an equiaxed or a

columnar structure depending on the solidification

mechanisms [14]. If crystal nuclei are formed in the

undercooled melt, they will grow in the zone and elim-

inate the melt undercooling. Chan et al. [15,16] were the

first to propose such an isothermal mushy zone model,

based on the assumption of local thermodynamic equi-

librium condition that does not permit melt undercool-

ing. On the other hand, the radiative supercooling would

lead to the break down of the planar interface and an

isothermal mushy zone would be formed made of ther-

mal cells or dendrites [4,17]. With the assumption of

local thermodynamic equilibrium in the mushy zone, for

a pure material the mushy zone will be isothermal in

both cases but with very different structures [14]. For

some special cases with high rates of heat transfer and

small geometric dimensions, the planar interface may be

stable even with a large melt undercooling. A prelimi-

nary analysis of such a non-equilibrium solidification

problem was recently given by the present authors [18]

with the introduction of the solidification kinetics.

Several studies exist in the literature using the equi-

librium mushy zone model to treat the phase change

problems of semitransparent materials. For example,

Oruma et al. [19] examined in detail the effects of an-

isotropic scattering on melting and solidification of a

semitransparent semi-infinite medium. They solved the

problem approximately using the integral method with a

parabolic temperature profile in the melt (for melting)

but a constant temperature in the mushy zone and the

remaining solid, and found a strong effect of anisotropic

scattering on melting rates. The equilibrium mushy zone

model has also been employed in the analyses of melting

and ablation of semitransparent materials subject to a

continuous [20] or a pulsed [21] laser irradiation.

The purpose of this study is to extend the earlier

works of Chan et al. [15,16] by including the effects of

optical thickness, heat conduction, scattering and ex-

ternal convection on the propagation of mushy zone in a

pure semitransparent material. Furthermore, it is in-

tended to present a comprehensive and systematical

study on the mushy zone equilibrium solidification of

semitransparent material with internal emitting, ab-

sorbing, and isotropic scattering. None of these results

have been previously available in the open literature.

2. Mathematical formulation and numerical solution

Consideration is given to a plane layer of thickness

D, as shown in Fig. 1, made of a gray medium being

emitting, absorbing, and isotropically scattering. The

slab is initially at temperature T0 above the freezing

Nomenclature

c specific heat of the material (J/kg K)

D thickness of the medium (m)

h enthalpy (J/kg)

hc convective heat transfer coefficient (W=m2 K)

H dimensionless enthalpy, ðh� cTmÞcTm
HR convection–radiation parameter, hc=ðrT 3mÞ
k thermal conductivity of the medium (W/m K)

n refractive index of the medium

N conduction–radiation parameter, k=ð4rT 3mDÞ
qr radiative heat flux (W=m2)

�qqr dimensionless radiative heat flux, qr=ð4rT 4mÞ
St Stefan number, cTm=k
t time (s)

T absolute temperature (K)

T0 initial temperature (K)

Te temperature of the environment (K)

Tm freezing temperature (K)

x coordinate in direction across the slab (m)

X dimensionless coordinate, x=D

Greek symbols

b extinction coefficient of the medium (m�1)

h dimensionless temperature, T=Tm
jD optical thickness of the layer, bD
k latent heat of fusion (J/kg)

q density (kg=m3)

q0; qi reflectivities to external and

internal incidence

r Stefan–Boltzmann constant

(5:6705� 10�8 W=m2 K4)

s dimensionless time ð4rT 3m=qcDÞt
x single scattering albedo

Fig. 1. Schematic of a semitransparent slab placed in a cold

environment.
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point of the material, and is placed in a much colder

surrounding. The slab surfaces are subject to both ra-

diation and external convective cooling. To simplify the

analysis, all properties are assumed to be temperature-

independent and phase-independent. Since the heat

transfer conditions from both surfaces of the slab are

assumed to be the same, only half of the slab will be

analyzed. Using the dimensionless variables defined in

the nomenclature, we can write the conservation of en-

ergy equation as

oH
os

¼ N
o2h
oX 2

� d�qqr
dX

: ð1Þ

The dimensionless temperature, h, and enthalpy, H, are
related to each other by

h ¼
H þ 1 solid region; H < 0;
1 mushy region; 06H 6 1=St;
H þ 1� 1=St liquid region; H > 1=St;

8<
:

ð2Þ

where St is the Stefan number. Eqs. (1) and (2) form the

enthalpy formulation of the phase-change problem. This

formulation is particularly convenient when there is a

two-phase region. The local liquid fraction in the mushy

zone is equal to the ratio of local enthalpy to that of

saturated liquid phase; or one can easily write the solid

fraction as fs ¼ 1� H=ð1=StÞ.
It should be noted that, depending on the solidifica-

tion mechanisms (equiaxed or columnar), the solid

fraction fs may have different physical explanations. In
the present study, the model does not distinguish the

structure configuration of the mushy zone in two solid-

ification mechanisms, since both configurations give the

same mathematical form of fs, which is mainly con-

trolled by the energy balance.

The gradient of the radiative heat flux in Eq. (1) can

be found in standard texts [22,23]

d�qqr
dX

¼ jDð1� xÞ n2h4
�

�
Z
4p

�IIdX
�
; ð3Þ

where the intensity of radiation, �II , can be solved from
the radiative transfer equation (RTE). The RTE in a

one-dimensional form can be written as

n
jD

d�II
dX

¼ ��II þ ð1� xÞ n
2h4

4p
þ x
4p

Z
4p

�IIðX ;XÞdX; ð4Þ

where n is the direction cosine of a radiation ray.
At the surface of the slab (X ¼ 0), the intensity of

radiation can be written as [23]

�IIð0;XÞ ¼ ð1� q0Þh4e
4p

þ qi

p

Z
n<0

�IIð0;XÞjnjdX ð5Þ

The surface is assumed to be diffusive and the reflectiv-

ities q0 and qi are determined by integrated averages

from the Fresnel reflection relations [22]. At the center

line (X ¼ 0:5), the intensity is symmetrical.
Because the radiation passing through or reflected by

the boundary has been taken into account in the solu-

tion of RTE, Eq. (4), the boundary condition for Eq. (1)

only involves external convection

4N
oh
oX

¼ HRðh � heÞ at X ¼ 0: ð6Þ

At the symmetry boundary,

oh
oX

¼ 0 at X ¼ 0:5 ð7Þ

In Eq. (6), for convenience, we have assumed that the

ambient temperature is the same as the environment

temperature, he.
The problem described above is solved using a fully

implicit finite volume method [24], which involves solv-

ing the energy equation and the RTE iteratively. The

latter is solved using the discrete ordinate (say, S4)
method [25]. It is found that a uniform grid with

DX ¼ 0:005 (i.e., 101 nodes) gives grid independent re-
sults in terms of temperature and solid fraction distri-

butions [26].

A mushy zone solidification process is typically

characterized using the solid or liquid fraction distri-

bution in the mushy zone. The boundary of the mushy

region is defined as the imaginary division lines between

the mushy region and pure solid or liquid regions.

Knowledge of this boundary will be helpful in under-

standing the effect of internal radiation on the phase

change process. The solid fraction in the mushy region

decreases asymptotically away from the completely so-

lidified portion, as has been pointed out by Chan et al.

[15]. The boundary between the mushy region and the

pure liquid region is defined as the location where the

solid fraction fs ¼ 0:01. Location of this boundary at

each time increment can be found by interpolation when

the distribution of solid fraction has been obtained from

the enthalpy function.

The location of the boundary between the mushy

region and the completely solidified region is determined

as follows. Suppose at certain time, the front of the pure

solid region is found within control volume i with

enthalpy Hi. The enthalpy function in the mushy region

(excluding this control volume) is then extrapolated to

the ith node to give H 0
i , an apparent value representative

of the enthalpy of the same control volume containing

no pure solid region. The fraction of the mushy portion

of the control volume i can now be approximated as

Hi=H 0
i , because the enthalpy of the pure solid portion is

zero. It follows that the position of the pure solid front is

given by

X ¼ 0:5ðXi þ Xiþ1Þ � Hi=H 0
i : ð8Þ
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The above approach generally yields a fairly smooth

interface history curve.

In order to quantify the total solidification rate, we

also define an imaginary total solid fraction interface

that represents the total solidification fraction of the

layer. Such a total fraction of solidified material includes

the fractional solid in the mushy region as well as the

pure solid region. Together with the solid boundary, it

forms an envelope with its thickness reflecting the

amount of solidified materials contained in the mushy

zone.

3. Results and discussion

Solidification of a semitransparent material is con-

trolled by many parameters, among which are the op-

tical thickness, kD, the conduction–radiation parameter,
N, the scattering albedo, x, and the external convective
cooling coefficient, HR. The ranges of these parameters

are chosen among those proposed by Siegel [27]. For the

results presented here, the refractive index, n, and the

Stefan number, St, are held fixed, i.e., n ¼ 1:5, St ¼ 2

without losing generality. The environment temperature

is assumed to be much lower than that of the slab, i.e.,

he ffi 0. Initially the melt is assumed to be superheated at

temperature T0=Tm ¼ 1:05. First the results without ex-
ternal convective cooling, i.e., the cases with a pure ra-

diative cooling at the boundary (HR ¼ 0Þ, are presented
to illustrate the characteristics of the equilibrium mushy

zone solidification of a pure semitransparent material.

The effects of various optical parameters, in particular,

the optical thickness and the scattering albedo, are in-

vestigated in detail. Finally, the effect of external con-

vective heat transfer is presented.

3.1. Thermal characteristics of equilibrium mushy zone

solidification

Fig. 2 presents the typical distributions of the tem-

perature and the solid fraction across the slab at various

times during solidification for the case with an interme-

diate value of the optical thickness, jD ¼ 5, and a small

conduction–radiation parameter, N ¼ 0:1. The scatter-
ing effect is not included for simplicity, i.e.,x ¼ 0. Since a

local equilibrium condition is employed during solidifi-

cation, solidification starts when the melt temperature

drops to the melting point, i.e., when h ¼ 1. Since the

surface temperature reaches the melting point first, so-

lidification starts at the surface. It is noted that not all of

the surface would solidify, however, because of the lim-

ited heat removal from the surface by radiation. Instead,

only a fraction of the melt at the interface solidified, as

evidenced by a solid fraction less than unity at the surface

shown in the upper part of Fig. 2 at time s ¼ 0:15. At that
time, the solid fraction at the surface (x=D ¼ 0) is only

0.46. It is also interesting to notice that the solid fraction,

although less than one, extends well into the slab at about

x=D ¼ 0:2. In other words, a mushy zone is formed im-
mediately when the solidification starts and extends into

the layer because of the internal cooling by thermal ra-

diation. Because of the local equilibrium condition, the

mushy zone is isothermal at the melting point, as one can

see in the temperature distribution curve for s ¼ 0:15 at
the lower part of the figure.

As the solidification takes place, the solid fraction at

the surface increases and the mushy zone is also wid-

ened. A solid shell is finally formed approximately at

s ¼ 0:27. At that moment, almost the entire slab is in the
mushy zone region and the entire slab is at the melting

temperature. As solidification goes further, the solid

layer temperature drops and the solid shell moves into

the slab. Fig. 2 also shows that the solid fraction at the

interface is not continuous anymore but undergoes a

sudden drop across the solid/mushy zone interface. In

the present conditions, it drops fast first to a minimum,

and then gradually increases slowly. The sudden drop of

the solid fraction at the front of the pure solid region is a

result of the discontinuity of the total heat flux at this

location. Note that the entire mushy region is at the

melting temperature of the material and thus there is no

heat conduction in this region; instead, heat is trans-

ferred out from the mushy region through internal ra-

diation only, in contrast to the combined mode (heat

conduction and radiation) of heat transfer in the solid

Fig. 2. Solid fraction and temperature distributions across the

slab for jD ¼ 5, N ¼ 0:1, x ¼ 0 and HR ¼ 0.
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region. Because of an exponential feature of radiative

heat flux in the mushy region, the variation of the solid

fraction is an exponential decay from the interface.

The propagation of the two artificial interfaces, the

interface between the solid and the mushy zone and the

interface between the mushy zone and the liquid region,

is shown in Fig. 3 for the same conditions as in Fig. 2. It

can be seen that the pure liquid region shrinks quickly

and the mushy zone spreads the entire slab at approxi-

mately s ¼ 0:28, about the same time when a solid shell is
formed. Since then, there are only two regions, i.e., the

completely solidified layer and the mushy zone. The total

solid fraction interface as a function of time is also shown

in Fig. 3 as a long dashed line. It can be seen that the long

dash and solid lines join each other at the end of solidi-

fication. In other words, the mushy zone disappears only

at the end of the solidification for this specific case.

3.2. Effects of optical thickness

Figs. 4(a) and (b) present the distribution of the solid

fraction in the mushy region at various times for three

values of jD: 1, 5 and 20, with all other parameters being

the same. Fig. 4(a) shows the cases when a solid shell just

forms at the surface, while Fig. 4(b) corresponds to the

situation when the pure solid front has moved to

X ¼ 0:2. One can see that the optical thickness of the
material has a strong effect on mushy zone solidification.

First of all, the optical thickness controls the width of

the mushy zone, the larger the value of jD, the smaller

the mushy zone width. For example, when the solid shell

formed at the surface, the mushy zone only extends into

the melt at X ¼ 0:045 for the case of jD ¼ 20, but the

entire slab is in the mushy zone for other two cases with

a much smaller jD (jD ¼ 5 and 1). Second, the solid

fraction at the solid/mushy zone interface is also

strongly affected by the optical thickness. As one can see

in Fig. 4(b), when jD decreases from 20 to 1, the solid

fraction at that interface increases from 0.32 to 0.9. This

is because a reduced optical thickness increases the in-

ternal cooling. Such an increased internal cooling also

results in a higher solid fraction in the mushy zone, as

illustrated by both cases in Fig. 4.

The solidification time is also strongly affected by the

optical thickness. This can be seen in Fig. 4(a). The solid

shell forms at s ¼ 0.08 for jD ¼ 20 but at s ¼ 0:27 for
jD ¼ 5 and at s ¼ 0:93 for jD ¼ 1. The optical thickness,

however, has a mixed effect on the total solidification, as

shown more clearly in Fig. 5 which compares the tran-

sient locations of the pure solid front and the total solid

fraction as a function of time for jD ¼ 0:1, 1 and

jD ¼ 20. Under the parameters specified, the total so-

lidification time is the shortest (1.45) for jD ¼ 1 but the

longest (3.5) for jD ¼ 0:1. The solidification finishes at
an intermediate time duration for the case with the

largest optical thickness, jD ¼ 20.

It is also noted in Fig. 5 that the dual lines for

jD ¼ 0:1 and 1 are far apart, especially at the earlier

times, indicating a widely spread mushy region. For

jD ¼ 0:1, solidification takes place in the whole volume
during most duration of the solidification process; a

completely solidified shell appears only at the end of

Fig. 3. Locations of the mushy zone boundaries and the total

solid fraction as functions of time for jD ¼ 5 with N ¼ 0:1,

x ¼ 0, and HR ¼ 0.

Fig. 4. Solid fraction distributions in the mushy zone for x ¼ 0, N ¼ 0:1, and HR ¼ 0 when the pure solid front reaches approximately

(a) X ¼ 0 and (b) X ¼ 0:2.
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solidification. For the large optical thickness, i.e.,

jD ¼ 20, however, the pair lines are very close to each

other, implying a narrow mushy region. It is expected

that, when one or both of the solid and liquid phases are

opaque to radiation, the optical thickness jD becomes

infinite and the mushy region disappears. This is in

agreement with the finding of Chan et al. [15]. The so-

lidification rate is a function of the optical thickness

because the heat losses from the slab depend strongly on

the optical thickness in the absence of external convec-

tion [28].

3.3. Effect of heat conduction

The distributions of the solid fraction in Figs. 2 and

4(b) all show a discontinuity at the boundary between

the solid and mushy regions. This is caused by the dis-

continuous total heat flux at that interface due to the

heat conduction in the solid layer but not in the iso-

thermal mushy zone. It is therefore expected that the

solid fraction should be a continuous function for the

case of pure radiation cooling (N ¼ 0). In this case, be-

cause the internal radiation is the only mode of heat

transfer, the radiative heat flux will be continuous across

the pure solid/mushy zone interface under the present

assumption of diffusive interface. Fig. 6(a) demonstrates

this phenomenon, which presents the solid fraction dis-

tributions at various times when the conduction–radia-

tion parameter is zero and all other parameters remain

the same as before. As one can see, the solid fraction is

1.0 at the solid/mushy zone interface for all times after a

solid shell is formed at about s ¼ 0:27.
The effect of the heat conduction under the condition

of internal radiation can be understood by comparing

the variation of the solid fractions under three values of

N ¼ 0; 0:1; and 0.5, given, respectively, in Figs. 6(a),

4(a), and 6(b). The comparison indicates that the mushy

region contains less solidified material or is richer in

liquid as heat conduction increases.

3.4. Effect of scattering

The effect of scattering on the mushy zone solidifi-

cation is examined under different values of optical

thickness at N ¼ 0:1, HR ¼ 0, and jD ¼ 20 or 5. Three

levels of scattering, i.e., x ¼ 0, 0.9 and 0.99 are consid-

ered. The results are in agreement with a previous study

[28]. The latter has shown that scattering serves to

equalize the temperature distribution and to slow down

the transient process. The effects of scattering result in a

wider mushy zone and a slower solidification rate, as

detailed in the following.

Fig. 7 compares the solid fraction distributions for

optical thickness jD ¼ 20 with different scattering levels.

Results at two time levels are plotted, i.e., when a solid

shell is just formed and when the front of the pure solid

has moved to X ¼ 0:2. Strong effects of scattering on
solidification can be observed immediately. First, scat-

tering reduces the solidification rate and thus increases

the solidification time. For example, a solid shell is

formed at time s ¼ 0:15 for the case without scattering,
but is formed at s ¼ 0:32 when the scattering albedo

Fig. 6. Effect of heat conduction on the solid fraction distributions in the mushy zone for jD ¼ 5, x ¼ 0, and HR ¼ 0 with (a) N ¼ 0

and (b) N ¼ 0:5.

Fig. 5. Locations of the pure solid front and the total solid

fraction as functions of time for jD ¼ 0:1, 1 and 20 with

N ¼ 0:1, x ¼ 0, and HR ¼ 0.
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increases to 0.9. Further increasing the scattering albedo

to 0.99, the time needed to form a solid shell at the

surface jumps to 1.77. Second, scattering leads to an

extended mushy zone with a high solid fraction in the

mushy zone. Such an effect of increasing the scattering

albedo on the mushy zone solidification process is very

similar to that of reducing the optical thickness.

Effects of scattering on the solidification rates can also

be understood by examining the propagation of the

mushy zone boundaries given by Fig. 8. Fig. 8(a) shows

the solid front location and the total solid fraction as

functions of time for the same conditions as in Fig. 7. It is

easily seen that increasing scattering leads to a wider and

a solid-rich mushy zone. Fig. 8(a) also shows the relative

variation of the mushy zone width when the scattering

albedo increases from 0 (i.e., without scattering) to 0.9

and from 0.9 to 0.99. Such variation demonstrates that

scattering has a rather weak effect on solidification unless

the scattering strength is very strong, when the optical

thickness is large as in the present case.

A much larger effect of scattering exists when the

optical thickness is reduced and the internal radiation

becomes more important, as shown in Fig. 8(b), which

depicts the propagation of the mushy zone boundaries

for jD ¼ 5. A rather wide mushy zone is formed when

the optical thickness is small as discussed before (solid

curves). Scattering further widens the mushy zone. It is

interesting to note from Fig. 8(b) that the propagation

of the liquid boundary does not change significantly

with the scattering strength. The scattering, however,

strongly delays the formation of the solid shell and its

growth.

3.5. Effect of external convection

External convective cooling is found to have signifi-

cant effects on the mushy zone behavior, as demonstrated

by Fig. 9. Fig. 9(a) shows the propagation of the solidifi-

cation front at HR ¼ 2 for three optical thickness condi-

tions (jD ¼ 0:1, 1 and 20). Comparing the pairs of curves
in Fig. 9(a) with their non-convection (i.e., HR ¼ 0)

counterparts in Fig. 5 reveals that addition of external

convection leads to a thinner mushy region as well as a

faster solidification rate. Indeed, atHR ¼ 2, the total solid

fraction interface and the pure solid front line are coin-

cident at the early stage of solidification. This implies that

the mushy region is reduced to essentially a planar inter-

face when the interface is close to the boundary surface.

Note that at this stage the heat transfer is dominated by

conduction due to large temperature gradients in the solid

region. Therefore, the solidification rates for different

optical thickness inFig. 9(a) are the same in the beginning.

Themushy regiongradually emerges laterwhen the role of

internal radiation becomes increasingly important with

the width depending on the optical thickness. The widest

mushy zone is formed for jD ¼ 1, but the mushy zone

Fig. 8. Effects of scattering on the solidification process for jD ¼ 5 and 20, N ¼ 0:1 and HR ¼ 0. (a) Solid front location and total solid

fraction for jD ¼ 20. (b) Mushy zone boundary location for jD ¼ 5.

Fig. 7. Effects of scattering on the solid fraction distribution in

the mushy zone for jD ¼ 20, N ¼ 0:1, and HR ¼ 0 for two lo-

cations of the pure solid interface: X ¼ 0 and X ¼ 0:2.
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width is significantly smaller than that shown in Fig. 5 for

the same optical thickness.

Fig. 9(b) presents some interesting limiting cases. A

very large value of HR is used for the external convection

cooling (e.g., HR ¼ 1000). In this case, the boundary

condition becomes the first-kind because the surface

temperature approaches the ambient temperature (i.e.,

Te ¼ 0). Several features of the solidification process can

be observed from Fig. 9(b). First, similar to what we

observed from Fig. 9(a), there is no mushy zone in the

early stages of the solidification process due to dominant

heat conduction, and the solidification rates in the early

stages for all cases are the same regardless the difference

in optical thickness. In addition, comparison between

Figs. 9(a) and (b) finds that the duration of the planar-

interface solidification period is longer for a higher HR.

Second, as jD reduces to 0.01, the mushy zone disappears

entirely because of negligible internal radiative effect

under this condition. In this case, the solidification pro-

cess can be considered to have a distinct interface between

the solid and liquid phases. One can compare this result

with the Neumann solution of the classical Stefan prob-

lem, i.e., the solidification of a semi-infinite domain with

the same initial temperature T0=Tm ¼ 1:05, as given by the
dotted line in the figure. It can be seen that a very good

agreement exists between the two solutions, at the early

stages of solidification. This further demonstrates the

soundness of our numerical methods used in this study.

4. Conclusions

This paper presents a systematical study of the mushy

zone equilibrium solidification of a one-dimensional

pure semitransparent material subject to radiative and

convective cooling. It is found that the thickness of the

mushy zone and its solid fraction distribution are strong

function of the material properties and the external heat

transfer conditions. A small optical thickness, a small

value of heat conductivity, or a high scattering level all

lead to a solid-rich and wider mushy zone. On the other

hand, the mushy region disappears when either the

material is optically thick or the solidification is at the

early stages when there is a strong external convective

cooling. Furthermore, the mushy zone also disappears if

the material is near transparent so that the internal ra-

diation heat transfer becomes negligible.
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